
Variants of Bundle Adjustment

Introduction:
Bundle Adjustment starts with optimizing the standard least squares problem between points in
images and predicted projection of 3D world points using given cameras. Both the 3D world
points and camera projection matrices are unknowns. Let x denote all the unknowns in the least
squares solution. The standard Levenberg-Marquardt solves it by computing update at eachxδ
update step using

(x)δx − (x)Hμ = g

Schur’s complement trick uses the sparse structure of this Hessian where the update nowHμ
splits as solving the equation

B C E]δy v C w)[− E −1 T = (− E −1

This linear equation is typically solved by using Cholesky Factorization. Due to poor conditional
number of , pre-conditioners are introduced in addition to using inexact type methods likeHμ
Conjugate Gradients methods to solve these equations. This CG method with preconditioners is
known as Preconditioned Conjugate Gradients (PCG). We experiment with several of these
methods and determine which of these is better for the given problem. These observations are
compared against those in the original paper.

Experiments:
 We evaluate Bundle Adjustment in six different settings.

1) Explicit-direct: Exact LM algorithm is used to update and solve the Schur’s complement
simplified system. Dense Cholesky Factorization is used as technique. Schur’s
complement is computed explicitly.

2) Explicit-sparse: Exact LM algorithm is used to update and solve the Schur’s complement
simplified system. Sparse Cholesky Factorization is used to explore the sparsity of S..
Schur’s complement is computed explicitly.

3) Normal-Jacobi: Firstly, block jacobi matrix is used as preconditioner for . TheM J Hμ
PCG algorithm is now done on the original equation (not simplified by Schur). This is
inexact type methods not involving computation of S.

4) Explicit-jacobi: PCG method is now applied on Schur’s reduced equation with as(S)D
the preconditioner. Explicitly computes the Schur’s complement S.

5) Implicit-jacobi: PCG is applied without directly computing Schur’s complement by using
tricks to evaluate matrix-vector product . is used as the preconditioner.vS (S)D

6) Implicit-ssor: PCG is applied without directly computing Schur’s complement by using
tricks to evaluate matrix-vector product . Block matrix is used as preconditioner onvS B
Schur’s complement.

We evaluate these six different alternatives on LadyBug dataset provided by the same authors.
We take 3 datasets in LadyBug which vary in size and report the performance details on these
datasets. The initialization of camera parameters and 3D points is provided by solving Sfm
problem on these datasets. This is done through a toolkit called ‘Bundler’.

Smaller Dataset:
The dataset consists of 49 images and 7779 points in 3D world with a total of 31843
observations. The results of running these six algorithms of BA are summarized in the table and
graphs below.

 Time taken (in sec.) for 100 iterations

Explicit-direct 7.667

Explicit-sparse 33.005

Normal-jacobi 13.072

Explicit-jacobi 8.039

Implicit-jacobi 19.976

Implicit-ssor 21.725

The above images show the time taken for 100 iterations of each of the variations. We observe
that the exact method (Explicit-direct) takes the least amount of time. This is mostly because the
exact nature of the algorithm coupled with the small problem size allowed the optimization to be
solved accurately and hence with less error.

We also observe that the sparse version (Explicit-sparse) takes much longer. This might be due
to the overheads involved in sparse methods which may exceed the actual runtime. The other
explicit method (Explicit-jacobi) also performs well because explicitly computing S gives better
accuracy without trading with time in the smaller dataset cas

The above graph shows the relative decrease in RMS error at each iteration with time. This can
be used to define tolerance levels on error and determine which algorithm performs best within
that limit. We notice that at lower tolerances, explicit-direct and explicit-jacobi reach minimum
the fastest and at very high tolerance, normal-jacobi performs better.

Medium Dataset:
The dataset consists of 810 images and 88814 points in 3D world with a total of 393775

observations. The results of running these six algorithms of BA are summarized in the table and
graphs below.

 Time taken (in sec.) for 100 iterations

Explicit-direct 1494.199

Explicit-sparse 758.027

Normal-jacobi 1007.536

Explicit-jacobi 208.17

Implicit-jacobi 328.947

Implicit-ssor 406.137

The above images show the time taken for 100 iterations of each of the variations. We first
observe that the explicit-direct and explicit-sparse take a large amount of time because of the
overhead in Cholesky factorization of larger matrices. This is due to the exact method of
computation which is very slow.

We notice that explicit-jacobi performs the best in this case. This is because the overhead of
computing S is very less in this problem due to the inherent sparsity in it. This makes it much
more viable to directly compute S and then applying PCG on it instead of indirectly using it. In
this same scenario, if alternatively sparsity of S is not high, then implicit-ssor become much
more viable.

These observations on medium dataset are consistent with the observations in the paper.

The above graph shows the relative decrease in RMS error at each iteration with time. This can
be used to define tolerance levels on error and determine which algorithm performs best within
that limit. We observe that at all tolerances below 0.01, explicit-jacobi performs the best. This is
also consistent with the conclusion made above.

Large Dataset
The dataset consists of 1723 images and 156502 points in 3D world with a total of 678198
observations. The results of running these six algorithms of BA are summarized in the table and
graphs below.

 Time taken (in sec.) for 100 iterations

Explicit-direct 12986.109

Explicit-sparse 896.382

Normal-jacobi 141.985

Explicit-jacobi 155.581

Implicit-jacobi 136.385

Implicit-ssor 111.952

The above images show the time taken for 100 iterations of each of the variations. First, we
observe that the explicit-direct takes very large amount of time. This is expected because
applying direct methods to large problems in bundle adjustment requires to operate on very
large matrices, hence creating a significant overhead which increases with problem size. Even
using sparse cholesky version does not give performance comparable to other indirect
computations.

We observe that implicit-ssor performs the best among all the methods. This happens when the
sparsity in S is slightly less and hence creates an overhead for explicit-jacobi. Also, the block
jacobi of B acts as better preconditioner instead of block jacobi of S. Even these results are
consistent with the observations in the paper which states that implicit-ssor performs the best for
large problems.

The below graph shows the relative decrease in RMS error at each iteration with time. This can
be used to define tolerance levels on error and determine which algorithm performs best within
that limit.

We notice that at tolerances like 0.001 and 0.0001, implicit-ssor performs the best. At tolerances
of 0.01, normal-jacobi performs good. These results are consistent again with the previous
observations.

Conclusion
We took three representative datasets covering small, medium and large sizes. We use Ceres 12

solver for solving these bundle adjustment problems. We notice that for small problems
explicit-direct performs the best. For medium problems, explicit-jacobi performs the best and for
large problems implicit-ssor performs the best. These results are consistent with the actual
conclusion in the paper.

1 "Bundle Adjustment in the Large - GRAIL - University of Washington."
http://grail.cs.washington.edu/projects/bal/ .
2 "Ceres Solver." http://ceres-solver.org/ .

http://grail.cs.washington.edu/projects/bal/
http://ceres-solver.org/

