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Abstract

Reinforcement Learning has been able to
achieve a lot of successes in tasks ranging from
video-game play to robotics by trying to max-
imize cumulative reward. However, a large
number of challenges still limit the claim for
deployment of these models in real-world sce-
narios. One such challenge is the question of
“how to deal with very large action spaces?”.
As humans, we are faced with multiple deci-
sions at every instant during our daily lives and
hence this is an important challenge. However,
current state-of-the-art algorithms face an is-
sue with exploring such large action spaces
and hence require an exorbitant number of
samples for training models. In this paper, we
look to tackle the problem of dealing with a
large natural language action space, in a text-
based game setting, through a combination of
action elimination and action generation tech-
niques. We show the efficacy of our approach
using the TextWorld(Côté et al., 2018) envi-
ronment on a set of cooking tasks in a home
world.

1 Introduction

Since their invention, video games have become
a popular form of entertainment across the world.
With the recent advances in computer graphics and
graphical processing units, video games are begin-
ning to closely resemble the real life world. Before
graphical games dominated the entertainment in-
dustry, text-based video games where often played
for enjoyment. Text-based games today, while
no longer played as often for enjoyment, are be-
ing used in the artificial intelligence and natural
language processing (NLP) research community.
This is because text-based games are considered a
type of dialog system, a heavily researched topic
in NLP.

2 Background

Traditional dialog systems are evaluated using
a BLEU score (Papineni et al., 2002), where a
higher BLEU scores means a better model. In
some circumstances, this evaluation metric may
result in a low score, but the dialog is still correct.
An evaluation metric where a goal is in mind, such
as a system successfully ordering coffee from a lo-
cal shop, may be a better metric to evaluate dialog
systems.

In text-based games, the player is usually ex-
ploring some sort of world, where the description
of the world is given to the player as text. The
player is also given a quest to complete such as
’pick up the key in the dungeon.’ The player must
enter text commands to complete this quest for
some sort of reward. Using these kind of games
for research provides the desired goal-orientated
environment to measure performance.

TextWorld (Côté et al., 2018) is a framework
developed by Microsoft Research to generate text-
based environments and is the main environment
used in the scope of this project. Microsoft Re-
search is hosting a competition using this frame-
work to solve various cooking games using rein-
forcement learning (RL). The player is placed in a
variety of different configurations of worlds and is
tasked with finding and following recipes in order
to prepare meals. The player may need to explore
the world to find the ingredients or cut the ingredi-
ents before cooking. Our team is given the option
to submit to this competition.

3 Related Work

Solving text-based games using reinforcement
learning proves to be a difficult challenge mainly
due to the large state and action space. Since the
environment and actions are text, the size of the
state and action space is combinatorial in the size



of the vocabulary. In most situations, the vocabu-
lary will be quite large. Many different approaches
can be taken in different sub-areas of RL, such as
building a model of the environment, generating
a knowledge graph, learning the best state repre-
sentations, encouraging efficient exploration, etc
to solve these text-based games.

One approach by (Li et al., 2016) combines the
popular LSTM recurrent neural network with the
DQN named LSTM-DQN (Mnih et al., 2013a),
which has been given as a baseline for the com-
petition. In this work, the LSTM encodes the ob-
servation, and the Q-values are predicted for verbs
and objects using a feed forward network. Assum-
ing that each action consists of a noun and a verb,
the Q-value for each action is predicted as the av-
erage of Q-values for the noun and the verb in that
action. LSTM-DRQN (Yuan et al., 2018a) aims to
improve on the exploration of LSTM-DQN with
the use of a bonus reward (different from the re-
ward given by the environment) based on the num-
ber of visits to a state. LSTM-DRQN also uses
an additional LSTM cell, which takes as input the
history from the previous time step, when encod-
ing the action.

The work proposed in this paper takes an
approach of action elimination for large action
spaces. The most prominent work dealing with ac-
tion elimination in text based environments is by
(Zahavy et al., 2018) which introduces the Action
Eliminate Network (AEN). AEN uses contextual
bandits to learn the action elimination using a pre-
dicted score e(s, a), for a given state s and action
a. An Action Elimination network is used to learn
the feature expansion required for the bandit, and
DQN training method is used for learning the pol-
icy. The main draw back of the AEN is that it as-
sumes that the agent has access to all possible per-
mutations of commands in the entire game which
may not always be true or is hard to calculate.

(Tao et al., 2018) uses a generative approach to
select commands that are admissible at each time
step, rather than eliminating actions. Admissi-
ble commands are commands that are recognized
by the environment and change the game state.
Three separate encoder-decoder pointer softmax
models are explored to learn actions based on a
given dataset. The main drawback lies in the
pointer method for selecting words out of the con-
text (current state) which performs a softmax over
the whole vocabulary. This is not feasible if the

size of the vocabulary is very large, which is usu-
ally the case with text-based games.

4 Methodology

Our algorithm is a hybrid approach that reduces
the number of actions that the agent has to con-
sider for decision-making through action elimina-
tion at multiple levels. It can be outlined with three
distinct modules:

• Context-based word elimination
• Admissible command generation
• Learning to control

Here, the first two modules are used for perform-
ing action elimination at the level of words and
commands respectively. In the first module, we
generate words that are important for producing
admissible actions in a particular state. Based on
the words that we obtain from the first module
(which should be a subset of the vocabulary), we
try to generate all the admissible commands i.e.
all commands that are valid and result in some
change of the game environment. Finally, based
on the commands generated, we learn a control
policy that learns to decide which action needs to
be performed at a particular time-step using Q-
Learning(Watkins and Dayan, 1992; Mnih et al.,
2013b).

4.1 Eliminating Words
This module is responsible for generating all the
valid words for a given state. We first define valid
words for a state to be the set of all the words that
could be used in any valid action at that state. We
next define valid action to be any action that is pos-
sible at the given state i.e. any action that results
in a change of the state.

The main intuition behind this module is that
only a few words make sense given the current
state. So, we would like to make the subsequent
action generation process simpler by allowing it
choose from a smaller pool of admissible words
rather than the entire vocabulary.

The architecture of the model used is given in
Figure 1 on the left side. Firstly, word embeddings
are extracted for the current observation and inven-
tory of the player. We currently use GloVe embed-
dings (Pennington et al., 2014) but later also plan
to explore BERT (Devlin et al., 2018) or ELMO
(Peters et al., 2018) embeddings.

We then pass these embeddings of the obser-
vation and inventory to an encoder LSTM which



Figure 1: The above figure shows the architecture diagram for the word elimination module (first stage) on the left
and the commands generation module (second stage) on the right.

generates a feature representation. This represen-
tation is then passed through a decoder MLP to
obtain a |V | dimensional vector where each value
lies in (0, 1). Here, |V | denotes the size of the vo-
cabulary.

This |V | dimensional vector encodes the prob-
ability that each word in the vocabulary is useful
at that state. We then threshold this vector to bi-
nary values {0, 1}where 1 denotes that the word is
valid and 0 otherwise and call this the elimination
mask. This threshold is obtained based on perfor-
mance of model on a validation set.

The training data for this task is a dataset used in
(Tao et al., 2018) provided by Microsoft Research.
This dataset contains a text description for a state
and has admissible commands as labels. We mod-
ify this dataset by splitting all the admissible com-
mands into valid words for each state. The target
vector contains 1s for every valid word thus ob-
tained and 0s elsewhere.

We train this architecture using weighted mean-
squared error where weights are inversely propor-
tional to the frequency of occurrence of the words
in the whole dataset. This gives larger weight to
words which appear rarely and hence eliminates
the possibility of the model learning to predict the
common words only. This training is done offline
i.e. before any RL training.

4.2 Command Generation

4.2.1 Sequence Model
Given the set of all the valid words at a given state,
we would now like to generate all the valid actions
at that state. Since the number of valid actions is
different for different states, we use an approach
similar to (Yuan et al., 2018b). Since we need
to have a variable number of actions generated,
we concatenate all the valid actions for a given

state, separated by a delimiter (sep), as a single
sequence. This sequence is now made as the tar-
get for the decoder to generate.

The architecture for the model is shown in Fig-
ure 1 on the right side. Firstly, the current state and
inventory of the player are encoded using the pre-
trained encoder LSTM from previous stage. This
encoder representation is then passed to a decoder
LSTM which is trained to generate the target se-
quence which is the concatenation of all valid ac-
tions for that state.

The decoder also has an attention (Bahdanau
et al., 2015) over all the hidden states from en-
coder LSTM. These attention values are combined
with the predicted probability vector over vocabu-
lary |V | as a copy mechanism (Yuan et al., 2018b).

At each time step, the output of the LSTM
which is a |V | vector is multiplied with a mask
which is the modification of elimination mask
from previous stage. This elimination mask is
modified such that −∞ is placed at all the posi-
tion with a zero. This ensures that taking softmax
at each time step only gives non-zero probabilities
to valid words which were not eliminated at previ-
ous stage.

The model is trained with loss function simi-
lar to (Yuan et al., 2018b). The loss consists of
the standard negative log-likelihood term for each
term in the sequence. It also contains an orthogo-
nal regularization term which ensures that the de-
coder hidden states which generate the sentence
delimiter (sep) have representation as far apart
from each other as possible. This ensures that the
sequences generated after the delimiter have some
amount of diversity.



4.2.2 Templated Commands
A second approach of command generation is con-
sidered where we classify each entity into a type,
then fill in the templates to form admissible com-
mands. Each entity can either be a room (r),
door (d), container (c), supporter (s), portable ob-
ject (o), key (k), food (f), or oven (oven). The
TextWorld framework provides a list of entities at
every time step as well as a list of templated ac-
tions for each game. At every time step, the list of
entities is assigned a classification label by passing
the GloVe embedded entity into a LSTM network
and a fully connected layer, then passed through a
sigmoid layer for a score. The label with the high-
est score is assigned to the entity. Then, for each
template, the entity type is extracted and filled in
based on the list of entities available at that time
step. This builds the list of admissible commands
to be given to the control module. An example of
the templanted command generation is in the Ap-
pendix. To build the training data for this model,
the training games from the competition were used
to extract out every entity and entity type from
each state of the game.
4.3 Control Policy

Figure 2: The model architecture used for Q-learning
is shown in this figure.

Given the set of admissible commands generated
by the agent, we would like to learn a control pol-
icy that decides which commands lead to rewards
for our task. We consider two common approaches
to solving the RL control problem - Actor-Critic
and Q-learning.

We briefly describe the details about the two al-
gorithms as well as our modelling choices in the
following sub-sections.

4.3.1 Q-Learning
Here, we estimate the Q(s, a) values over the set
of admissible actions generated as,

Q(s, a) = φ(s)Tψ(a)

where φ(s) is the context vector obtained from
word elimination stage i.e. cew. ψ(a) is an GRU
that encodes the action into a representation and
these parameters of GRU are learned by the RL al-
gorithm. We plan to use Q-learning (Watkins and
Dayan, 1992) to learn the parameters, an approach
similar to DQN (Mnih et al., 2013b).

We adopt the framework of the Deep Rein-
forcement Relevancy Network (DRRN) (He et al.,
2016). In this approach, Q(s, a) is computed for
each feasible action for the current state and the
squared temporal difference error is minimized via
gradient descent.

Loss = (rt + γmax
a′

Q(st+1, a
′)−Q(st, at))

2

Additionally to prevent action repetition and
action cycles, we introduce an additional LSTM
which takes in the encoded state and each time
step and re-encodes it. This makes each final state
encoding aware of information from all past states.
This was inspired by Deep Recurrent Q-Learning
(Hausknecht and Stone, 2015).

4.3.2 Actor-Critic
Q-learning described in the Section 4.3.1 uses the
Q-values to parametrize the policy. An alternate
approach is the use of actor-critics (Sutton and
Barto, 2018), which is a class of algorithms in RL
that aim to explicitly learn the policy and value
functions separately while attempting to maximize
the cumulative rewards available from the environ-
ment

Similar to our architecture in the previous sub-
section, we encode the each state (s) and each
action (a) using GRU encoders to obtain repre-
sentations φ(s) and ψ(a) respectively. Follow-
ing which, we perform a dot product between the
state and action encoding to obtain a score func-
tion p(s, a),

p(s, a) = φ(s)Tψ(a)

Now, we do this for each admissible action for
each state and perform a softmax over the score
functions to obtain the policy π(s, a).

To perform action sampling, we use the
Gumbel-max trick for categorical distributions as
proposed in (Jang et al., 2016). In addition, we use
a multi-layer perceptron over the state encoding
φ(s) to obtain the value function V (s) = wTφ(s).

Finally, our training closely matches that of
an existing architecture in A2C (Schulman et al.,



2017). We optimize the standard advantage-based
policy gradient along with the TD-error for the
value function and an additional entropy loss for
the policy to induce some stochasticity and aid
exploration. Our loss function can be mathemat-
ically written as,

Lpolicy =
( T∑
k=t

γkrk − V (st)
)
log π + π log π

Lvalue = ‖
T∑

k=t

γkrk − V (st)
)
‖22

Loss = Lpolicy + c ∗ Lvalue

Here, rt is the reward obtained for executing ac-
tion at in state st. c is a hyper-parameter that
we obtain using empirical search. Note, while we
mention just π in the above equation due to space
constraints, it is indexed as π(st, at).

5 Evaluations

To evaluate the word generator, the precision, re-
call, and f1 score will be used. For each test state
description, the model predicts a score for each
word in the vocabulary for every input state de-
scription. This score is then thresholded to receive
a binary list of words that are most likely to ap-
pear in commands. Using the label, a target list is
composed and the precision, recall, and f1 score
are calculated.

f1 =
2 ∗ (precision ∗ recall)
(precision+ recall)

For evaluating the command generation model,
we again compute precision, recall and f1 score
between the ground truth valid actions and the se-
quence of actions that are generated by the model.

To evaluate the control policy, we look at the
final score the agent achieves in a game. Ideally,
the agent will receive the maximum possible score
in the shortest amount of time.

6 Baselines

So far we have been attempting to overfit to a very
simple environment and have been comparing to
an implementation of LSTM-DQN (Mnih et al.,
2013b) and an agent which takes random actions
at each step. Table 1 shows the performance of
these baselines on set of hidden games of the com-
petition.

Figure 3: Percentage of top 20 Missing Words (Words
not generated when they were supposed to be)

Algorithm Score (w/o
handicap)

Score Steps

Random Agent 781.5 1563.0 132279
LSTM-DQN 266.5 410.0 214180

Table 1: Performance of baselines on hidden games.

7 Results

Fig 3 shows the performance of the word elimina-
tion model on the test set from (Tao et al., 2018).
The bar plot shows the top 20 words that are most
frequently eliminated when they should not have
been. For example, the word ‘wing’ was elimi-
nated 16 percent of the time when it should have
been included in the word set. The performance of
this model appears to be acceptable to begin with,
but better word embeddings may improve perfor-
mance and will be explored next.

The command generator module is still cur-
rently not performing well with the top perfor-
mance until now being an f-score of ∼ 10%. In
spite of this, the model has at least learned the cor-
rect ordering of words in each sentence to form
a meaningful one i.e. verb should be followed
by a noun, etc. An example result of this valid
action generation is shown in Appendix A. Be-
cause of the low performance, we began exploring
the template-based action generation described in
Section 4. The TextWorld environment provides
the functionality to receive all admissible com-
mands at each time step. The RL results shown are
using this handicap, but with the intention of using
the template-based action generation instead of the
framework to provide a list of admissible com-
mands in future work. We evaluated the RL algo-
rithms, on two TextWorld environments. One very
easy where the agent is in one room and just needs
to cook and eat a meal, and one a little harder



Figure 4: DRRN training curve on a simple 2-step (op-
timal) cooking task.

where the agent needs to collect a small amount
of items before cooking. The training curve for
DRRN which learns to overfit to the simple game
can be found in Figure 4 along with results for the
baselines.

The agents also learn on the medium game but
perform worse than the LSTM-DQN baseline and
are prone to unlearning as seen in Figure 5. We
also experimented with adding randomness to the
initial state by performing random actions at the
beginning to infer whether the model just memo-
rizes the action sequences. This did not affect the
rewards so the model is capable of learning with-
out simply memorizing.

8 Conclusion and Future Work

In summary, we proposed an end-to-end method
for training agents for solving text-based games.
We encountered a bottleneck in the command gen-
eration sequence model which inhibited a full end-
to-end model, but began to implement a template-
based command generation module to address this
issue. We were still able to train the RL agent
separately on individual games using a list of ad-
missible commands provided by the framework,
but hope to eliminate this in future work. In ad-
dition, we hope to use better pretrained embed-
dings (ELMo or BERT) and develop a method for
training the RL algorithms across multiple games
at once.

IEEE Conference on Games is holding a paper
track for the TextWorld competition. We will con-
tinue to work on the templated command genera-
tion to try and get and end-to-end model working
for this submission. This would also give the op-
tion to submit to the competition, but we are un-
sure if we will submit since we choose a general
approach to solve our problem and a hand engi-

neered solution may be best for scoring high on
the competition.

Figure 5: DRRN and A2C on the medium game.
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A Appendix - Results on an example

State Description

-= kitchen =- you arrive in a kitchen. a standard one. you can see
a fridge. there’s something strange about this being here, but you
can’t put your finger on it. the fridge contains a raw pork chop, a
red onion, a white onion, a cilantro and a black pepper. you can
see a closed oven. you can see a table. the table is massive. but
the thing is empty, unfortunately. oh! why couldn’t there just be
stuff on it? you can make out a counter. on the counter you can

see a banana, a yellow bell pepper, a raw purple potato and a
cookbook. you can see a stove. the stove is conventional. but the

thing is empty, unfortunately. there is a knife on the floor.

Inventory a fried yellow potato, an orange bell pepper, a sliced carrot .

Valid words (not eliminated by
first module)

banana, bell, black, carrot, chop, cilantro, close, cook, cookbook,
counter, dice, drop, eat, examine, fridge, from, insert, into, knife,

meal, on, onion, orange, oven, pepper, pork, potato, prepare,
purple, put, red, slice, stove, table, take, white, with, yellow

Valid actions (generated by
second module)

chop orange bell pepper counter / put orange bell pepper on table
put orange bell pepper on counter you / chop orange bell pepper

a orange bell pepper / put orange bell pepper on table / put
orange bell pepper on table / put orange bell pepper on counter

Table 2: Positive Example of Command Generation

State Description

-= bathroom =- you’re now in the bathroom. you can make out a
toilet. unfortunately, there isn’t a thing on it. you move on,

clearly infuriated by your textworld experience. you need an exit
without a door? you should try going east.

Inventory you are carrying nothing.

Valid words (not eliminated by
first module)

bathroom, door, east, examine, from, go, put

Valid actions (generated by
second module)

a toilet / thing toilet / toilet toilet / on toilet / you on / toilet toilet

Table 3: Negative Example of Command Generation



State Description

-= Kitchen =- The fridge contains a red hot pepper. You make
out an oven. Oh wow! Is that what I think it is? It is! It’s a table.

You see a cookbook and a knife on the table. You can see a
counter. On the counter you see a red apple. Were you looking

for a stove?!
Entities with classification in

brackets (provided by Textworld
Framework)

fridge {c}, oven {oven}, counter {s}, red apple {f}, red hot
pepper {f}, knife {o}

Template (provided by
Textworld Framework)

cook {f} with {oven}, eat {f}, open {c}, put {o} on {s}, dice
{f} with {o}

Valid actions (generated by
second module)

cook red hot pepper with oven, cook red hot pepper with
stove,eat red apple, eat red hot pepper, dice red hot pepper with
knife, dice red apple with knife, open fridge, put red hot pepper

on counter, put apple on counter

Table 4: Example of Templated Command Generation


