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ABSTRACT

SELF-SUPERVISED 3D SCENE FLOW ESTIMATION
FROM LIDAR POINT CLOUDS

MAY 2020

Y. S. S. V. SASI KIRAN

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

With the rise in popularity of autonomous driving, perception on top of LIDAR

point clouds is becoming increasingly important. One such task is the point-wise scene

flow estimation in real-time which helps in improving the performance of localization

and trajectory planning tasks in the autonomous stack. To tackle this task, we

present a simple unsupervised clustering and ICP based method which performs as

well as the current learning based self-supervised methods and comparable to the fully

supervised methods trained on lots of simulated data. We show that this method can

be used to generate good flow labels for the large amounts of unlabelled LIDAR scenes

easily available in self-driving datasets which can be used to pre-train or fine-tune the

existing models. Experiments on fine-tuning the popular flownet3D model using such

labels for the point clouds in KITTI odometry dataset show a 25% improvement over

the existing performance.
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CHAPTER 1

INTRODUCTION

The recent advancements in the fields of artificial intelligence and computer vision

has given rise to an increased interest in tackling the autonomous driving problem.

One of the critical components of autonomous driving is to have an increasingly

accurate perception of the world around the vehicle at all times. One option is

to consider alternative sensors for perception other than camera which can provide

additional information about the world in real-time. LIDARs are one such sensor

which provide the 3D information about the world within a certain range of the

ego-vehicle as point clouds.

These point clouds provide depth information for free in addition to the informa-

tion of the world in the blind-spots of the cameras. As safety is a critical require-

ment of autonomous driving, perception on top of these LIDAR point clouds helps

to augment the perception from cameras and hence helps in better decision making.

Additionally, several 3D perception tasks like 3D objection detection [24, 8, 14], 3D

semantic segmentation [12, 13, 18], etc. are made easier with the help of these point

clouds.

One such task in 3D perception is estimating the 3D scene flow for each point

in the point cloud. This involves estimating the point-wise velocities in x, y and z

directions given the point clouds from consecutive scenes. This information is quite

important as it can help in improving the localization accuracy by identifying points

that move due to other vehicles in the scene and separating them. It can also help in

making better planning decisions as future trajectories of other vehicles can be better

1



Figure 1.1. An example demonstrating the 3D scene flow estimation task given
LIDAR scans from consecutive scenes. The images on the top visualize the point
clouds from two consecutive scenes with the same projective camera. Notice how the
car in the front moves forward from left to right. Given these two point clouds, our
task boils down to computing the 3D scene flow for every point in the first point cloud
to make it correspond to second point cloud. For this example, the l2 norm of the
target 3D scene flow for the given point clouds is shown in the figure at the bottom.
The scale of the scene flow norm is shown using color scale with red being at 1.41m
and blue being at 2.72m.

estimated from this 3D scene flow information. An example demonstrating this 3D

scene flow estimation task is shown in Figure 1.1

Recently, several large autonomous driving datasets [2, 4, 20] with massive amounts

of LIDAR scenes are being made available publicly. Despite this availability, obtain-

ing point-wise labels for LIDAR scenes is a very tedious task that requires large

amounts of money and effort. On top of this, obtaining point-wise scene flow labels

is extremely difficult compared to other labels like semantic labels and hence is not

feasible for these large datasets.
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In light of this difficulty of obtaining flow labels, researchers have looked at training

models on large simulated datasets like FlyingThings3D [10]. Training on these simu-

lated datasets will always require the bridging of the domain gap between point clouds

from simulated and real scenes. The other alternative is to design a self-supervised

learning approach [21, 11] to take advantage of large amounts of unlabelled LIDAR

scenes available.

In this work, we present a simple unsupervised method for estimating 3D scene

flow based on mean-shift clustering and Iterative closest point (ICP). We show that

this simple approach performs as well as the current learning based self-supervised

methods [21, 11] and comparable in performance to the fully supervised methods

[9, 6].

Simultaneously, we show that this method can be used to generate good unsu-

pervised flow labels for large amounts of point clouds in real-world LIDAR scans

using the KITTI odometry dataset [5] as an example. We further show that these

generated labels can then be used to fine-tune existing scene flow models to improve

their performance. We show this improvement using the popular FlowNet3D model

as the backbone network and observe better performance than just being trained on

FlyingThings3D dataset [10].
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CHAPTER 2

RELATED WORK

We first list the work related to general point cloud based learning methods. Then,

we list all the related work corresponding to the 3D scene flow estimation from point

clouds.

2.1 Point Cloud based Learning

Learning-based point cloud processing methods can be broadly divided into three

categories. The most intuitive way is to divide the point cloud into a 3D grid of voxels

and extract a feature per voxel which can then be processed using 3D convolutions

[24, 8]. The other alternative is to project the point cloud along different viewpoints

onto images and then apply standard learning-based methods on these images [17].

The main problem with these two approaches is the loss of information due to

voxelization and projection along specific viewpoints respectively. The third category

is to process the point clouds as sets of points and then apply learning methods that

are invariant to ordering of points in the sets and this avoids the drawbacks of the

previous approaches.

Qi et al. [12] were the first to propose set-based learning architecture with shared

convolutions and pooling operations called PointNet. A later improvement over this

called PointNet++ which uses hierarchical network to capture local neighborhood

features was then proposed [13]. Su et al. [16] look at projecting the point set into

high dimensional lattice and then use bilateral convolutions as the main module of

4



the network. Other alternative approaches [22, 18, 15] involve using various types of

sparse convolutions to handle the inherent sparsity in the point clouds.

2.2 3D Scene Flow Learning

Liu et al. [9] were the first to design a deep network for scene flow estimation from

point sets. They propose a deep network named FlowNet3D that estimates the scene

flow directly from point cloud. PointNet++ [13] is used for extracting features from

individual point clouds which are then combined using flow embedding layers. These

features are then upsampled to predict flow for point clouds from consecutive scenes.

Gu et al. [6] also propose a network for scene flow estimation which uses modules

based on Bilateral Convolutional Layers [16] to combine features from consecutive

point clouds after projecting them onto high dimensional lattice. Behl et al. [1]

propose to jointly learn 3D bounding box and rigid body motion of objects in the

scene and use voxelization to extract features from point clouds. All these methods

are trained on a synthetic dataset and are then evaluated on real LIDAR scans.

2.3 Self-Supervised Flow Learning

There are several works [19, 23] that jointly estimate depth, object segmentation,

ego-motion and rigid body motion from videos in a self-supervised manner. However,

very little work has been done in scene flow estimation from point clouds in a self-

supervised manner. It is a promising area of research as flow labels are hard to obtain

for real point clouds to train in a supervised manner.

Parallel to our work, Mittal et al. [11] design a self-supervised training approach

with nearest neighbor loss and a cyclic consistency loss on top of a FlowNet3D back-

bone network. Wu et al. [21] design a network that can be trained in a self-supervised

manner using a similar nearest neighbor loss as [11] and smoothness and regularization

constraints. Unlike these approaches which design self-supervised loss functions, we

5



look at obtaining self-supervised labels for the large amounts of unlabeled data which

can then be used as supervised signals to train the scene flow networks. Additionally,

we also observe that our simple self-supervised baseline method with clustering and

ICP obtains results that are as well as these other works.
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CHAPTER 3

METHODOLOGY

3.1 Problem Definition

We now formally define the 3D scene flow estimation problem. Computing the

point-wise scene flow requires the LIDAR scans of consecutive scenes as input. Define

P ∈ Rn1×3 and Q ∈ Rn2×3 as the input point clouds corresponding to the consecutive

scenes. They contain n1 and n2 points respectively with the three columns being

the (x, y, z) locations of each point. We note that we do not use any additional

information like reflectance, normals, etc for each point in the LIDAR scans.

Our 3D scene flow estimation task then boils down to computing the 3D displace-

ment required for each point in P to make it correspond to the point cloud of next

scene Q. Formally, let x ∈ P be a point in the first point cloud which changes to

a new position x′ in the second scene. Then, the flow for this point is just the 3D

displacement f = x′ − x which when computed for every point in P gives a vector

F ∈ Rn1×3. We note that this point x′ may not be explicitly present in the second

point cloud Q due to the difference in LIDAR sampling angles of the scenes.

3.2 Clustering-based ICP

We now describe the self-supervised method which uses clustering and ICP to

compute scene flow from point clouds which is as well as learning based methods.

The motivation for designing this method is the fact that ICP by itself computes

good scene flow for the points which correspond to the background in the scene. For

other rigid bodies like cars, trucks whose motion is different from the ego-motion,

7



ICP can still be used separately to compute good scene flow results as long as we find

the correct correspondences for these objects across the scenes.

Based on this motivation, we aim to separate the point clouds into foreground

object clusters and a background cluster so that their scene flows can be computed

separately. Background clusters from consecutive scenes can be matched directly

using ICP to compute scene flow for background points. Simultaneously, we need

to match the foreground clusters from both the consecutive scenes to find correct

associations. If the objects clusters are correctly matched, then ICP can be used

directly between these two matched clusters to find scene flow for points corresponding

to that object cluster.

We now describe this approach in detail which is summarized in Figure 3.1. We

start by using ICP on whole point clouds to compute an initial estimate of the ego-

motion transformation τ ∈ SE(3) and a corresponding residual vector R ∈ Rn1×3.

We then transform the the first point cloud P using this estimate transformation to

obtain an ego-shifted point cloud P′ = τ(P).

We then cluster the ego-shifted point cloud P′ and the second point cloud Q

using mean shift clustering with a bandwidth B. We chose mean-shift clustering

over other clustering methods because of its intrinsic ease of parameter specification.

Other clustering methods like K-means, hierarchical require specifying the number of

clusters or the distance threshold respectively while also not handling variable den-

sity clusters properly. Other density based methods like DBSCAN, OPTICS require

proper parameter tuning while the mean-shift clustering only requires specifying the

bandwidth of the kernel which is slightly easier to tune.

We next iterate over each cluster in P′ and count the number of points in the

cluster with l2-norm of the residual greater than a residual threshold (α). If the

number of such points exceeds a certain percentage (β%), then it contains lots of

points that are not aligned with the estimated ego-motion transformation τ . We thus

8



Figure 3.1. The above figure outlines the pipeline for the clustering-based ICP
method. Note that the final ”cluster-wise ICP” method uses residual to assign clusters
as part of background or foreground. Then ICP is done for background clusters as a
whole while it is done cluster-wise for each foreground cluster.

9



assign such a cluster as part of foreground object and hence match it with clusters in

the other scene Q. Otherwise, we can assign this cluster to be a part of the background

as it follows the background transformation τ . We later tune these hyperparameters

α and β to optimize the scene flow performance.

Finally, we match each foreground cluster in P′ with a single closest cluster in

Q based on the euclidean distance between the cluster centers. We then use ICP

to compute the transformation τbg for all the background points and the individual

transformations τ ifg for the ith foreground cluster using matched points only. We

combined these estimated transformations to get the 3D point-wise scene flow for

points clouds P and Q

3.3 Finetuning FlowNet3D

The scene flow results generated from the clustering-based ICP method described

in Chapter 3.2 can be used to finetune the existing learning-based scene flow meth-

ods. We show the finetuning using FlowNet3D network as an example which can be

similarly extended to other networks.

We first give a short description of the flownet3D architecture followed by de-

scribing the process of finetuning on labels generated by the clustering-based ICP

method.

3.3.1 FlowNet3D

Flownet3D [9] is the first proposed deep neural network that estimates scene flow

from point clouds in an end-to-end manner. The model for estimating scene flow is

divided into three modules which is summarized in the Figure 3.2.

The first module consists of point-wise feature learning network to learn features

for each point cloud separately. Here, the authors use PointNet++ [13] to extract

features from each point cloud individually.

10



Figure 3.2. Architecture diagram of FlowNet3D model.

The flow embedding layer then combines the point cloud features from both

frames. For each point in the first frame, we gather all the points in the second

frame that are within a radius from the (x, y, z) position of that point. We then pass

them through PointNet [12] style fully connected followed by maxpool layers to get

a feature for every point in first frame. This can be visualized from the Figure 3.3.

Finally, the features from each of the new points are upsampled back to get a

scene flow prediction for each point using the set upconv layers.

3.3.2 Finetuning

For finetuning the FlowNet3D model, we first load the pre-trained model weights

obtained from training the model on FlyingThings3D [10] which is a synthetic dataset.

We then finetune the network on unlabeled real-world LIDAR scans by generating

labels using the unsupervised clustering-based ICP approach. We then use these

labels as self-supervisory signal for finetuning FlowNet3D model.

We explore the following loss function for finetuning FlowNet3D.

L2 Loss: We use the labels generated by the clustering-based ICP method de-

scribed in Chapter 3.2 as a supervisory signal. Given the point clouds P and Q, we

11



Figure 3.3. Pictorial representation of the flow embedding module. For each point
in the first point cloud (displayed in orange), we group the nearest points from the
second point cloud (denoted in blue) as shown. Then, we get a feature vector (denoted
in red) for each point in the first point cloud by passing these grouped points through
a PointNet style point aggregator network.

simply compute the average squared l2 distance between the estimated scene flow

{ŝf i}Ni=1 and the generated label {sfi}Ni=1 and use this as a supervised objective.

Lsup =
1

N

N∑
i=1

||sfi − ŝf i||22 (3.1)
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CHAPTER 4

EXPERIMENTS

4.1 Datasets

We describe in short detail about the datasets used for the pre-trained model as

well as fine-tuning and evaluating FlowNet3D model on scene flow estimation task.

4.1.1 FlyingThings3D:

This [10] is a synthetic dataset that originally contains stereo and depth images

rendered from 3D objects from ShapeNet [3] moving in the scene. Liu et al. [9]

randomly select 20, 000 examples for training and 2000 examples for evaluation. They

also pre-process the data by converting disparity maps into 3D point clouds and

optical flow to scene flow labels. This dataset is widely used for pre-training the

scene flow estimation models like FlowNet3D [9].

4.1.2 KITTI Odometry dataset:

This dataset [5] consists of real world image and LIDAR data collected for 22

closed-loop tracks. Each track contains a variable number of continuous LIDAR

point cloud scans depending on the length of the track. This dataset contains a total

of 100k unlabeled LIDAR point clouds approximately. We use this large unlabelled

dataset for generating scene flow labels using clustering-based ICP method which are

further used for fine-tuning FlowNet3D.
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4.1.3 KITTI Scene Flow 2015:

This dataset also contains camera and LIDAR scans from 200 real-world scenes.

Gu et al. [6] process the dataset to obtain 3D point-wise flow labels for 142 scenes in

training set. Following all the previous works [6, 21], this dataset is used to compare

the performance of the scene flow results.

4.2 Evaluation Metrics

We use the standard evaluation metrics to evaluate the quality of the scene flow

estimates compared to ground truth labels. The first metric is 3D End Point Error

(EPE3D) which is the average l2 distance between the predicted and ground truth

scene flow same as the supervised objective in Equation 3.1. The next metric is

accuracy (Acc3D) which measures the percentage of points whose scene flow predic-

tions are within a threshold of the ground truth labels. We measure accuracy at two

thresholds - (Acc3D-5%) where EPE3D < 0.05m or the relative error is less than 5%

and (Acc3D-10%) where EPE3D < 0.10m or the relative error is less than 10%.

4.3 Pre-processing

We use the standard pre-processing employed by [9, 6, 21, 11] for the LIDAR

scans while finetuning FlowNet3D. We first remove the ground points from the point

clouds by assigning all the points which are below 1.4m in the z-direction as ground

points. This is because finding correspondences for ground points would not yield

good results on account of it being a flat surface most of the time.

We then consider only the points which are within 35m of the ego vehicle. This

is because most foreground moving objects are within this depth range. While fine-

tuning FlowNet3D, we sample n points randomly from the first point cloud. We then

select the corresponding nearest points in the second point cloud for each point in the

first after shifting the first point cloud by the flow label. If the points are randomly
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selected in the second point cloud also, there may not be correspondences for the

points in the first cloud which makes the training harder. We use n = 16384 while

finetuning FlowNet3D.

4.4 Results

4.4.1 Clustering-based ICP method

Quantitative results comparing the best performing clustering based ICP method

with the other self-supervised methods is shown in Table 4.1

Method EPE3D⇓ Acc3D-5%⇑ Acc3D-10%⇑
ICP 0.5181 6.69% 16.67%

PointPWC-Net [21] 0.2549 23.79% 49.57%
Clustering-based ICP (Ours) 0.2490 58.5% 65.3%

Table 4.1. The above table compares the clustering-based ICP method with other
unsupervised and self-supervised methods.

We notice that this simple unsupervised clustering-based ICP method outperforms

the current best self-supervised method PointPWC-Net [21] which involves training

a deep network. Noticeably, we gain a remarkable 145% improvement in Acc3D-5%

while also improving the Acc3D-10% by 32%. We again note that this clustering-

based ICP method does not involve any learning.

Similarly, we compare this clustering-based ICP method with the existing fully-

supervised methods and this is shown in Table 4.2. We note that in spite of our

method lacking any training, we perform almost as well as fully supervised methods.

In particular, we note that we perform the second best in Acc3D-5% and the third

best in Acc3D-10% while comparing with fully supervised methods. This shows the

good performance of our simple method.
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Method EPE3D⇓ Acc3D-5%⇑ Acc3D-10%⇑
FlowNet3D [9] 0.1767 37.38% 66.77%

SPLATFlowNet [16] 0.1988 21.74% 53.91%
original BCL 0.1729 25.16% 60.11%

HPLFlowNet [6] 0.1169 47.83% 77.76%
PointPWC-Net [21] 0.0694 72.81% 88.84%

Clustering-based ICP (Ours) 0.2490 58.5% 65.3%

Table 4.2. The above table compares the clustering-based ICP, unsupervised method
with other fully supervised methods.

4.4.1.1 Hyper-parameter tuning

We now describe the effect of the hyper-parameters on the performance of clus-

tering based ICP method. We note that the parameters of this method are the band-

width (B) of the mean-shift clustering, residual threshold (α) and point percentage

threshold (β%). We present the results in Table 4.3.

Method EPE3D⇓ Acc3D-5%⇑ Acc3D-10%⇑
(B = 2, α = 0.2, β = 10%) 0.249 58.5% 65.3%
(B = 1, α = 0.2, β = 10%) 0.342 48.1% 56.7%
(B = 3, α = 0.2, β = 10%) 0.276 48.9% 56.3%
(B = 2, α = 0.1, β = 10%) 0.258 52.3% 60.3%
(B = 2, α = 0.3, β = 10%) 0.291 44.9% 53.4%
(B = 2, α = 0.2, β = 15%) 0.286 48.3% 56.0%
(B = 2, α = 0.2, β = 5%) 0.264 53.1% 60.6%

Table 4.3. The effect of changing the hyper-parameters on the performance of the
clustering-based ICP method.

4.4.1.2 Qualitative Results

We first observe success cases of this method as shown in Figure 4.1. As observed in

both these cases, the moving vehicle has been assigned a correct flow due to foreground

clustering and ICP on individual clusters.

We now turn to the cases where this method does not perform as well as shown

by examples in Figure 4.2. The left point cloud has correct flow for cars but they
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Figure 4.1. Example of point clouds where the clustering-based ICP method works
very well. The color scale shown represents the error in flow compared to ground
truth. Red being correct to blue being 2.5m error.

Figure 4.2. Example of point clouds where the clustering-based ICP method does
not work well. The color scale shown represents the error in flow compared to ground
truth. Red being correct to blue being 2.5m error.
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Method EPE3D ⇓ Acc3D-5% ⇑ Acc3D-10% ⇑

Fully-Supervised

FlowNet3D [9] 0.1727 18.56% 55.61%
SPLATFlowNet [16] 0.1988 21.74% 53.91%

original BCL 0.1729 25.16% 60.11%
HPLFlowNet [6] 0.1169 47.83% 77.76%

PointPWC-Net [21] 0.0694 72.81% 88.84%

Self-Supervised

ICP 0.5181 6.69% 16.67%
PointPWC-Net [21] 0.2549 23.79% 49.57%

Clustering-based ICP (Ours) 0.2490 58.5% 65.3%
Finetuned FlowNet3D (Ours) 0.1286 36.6% 72.31%

Table 4.4. The above table shows the performance of both self-supervised and fully
supervised methods on 3D scene flow estimation task.

are both slightly off from ground truth. The right case is the one where this method

does not perform well at all. This is because the walls of the background lack any

texture and are just straight walls. This makes it hard for ICP to find the right

correspondences.

4.4.2 Finetuning FlowNet3D

4.4.2.1 Finetuning Parameters

We initially load the pre-trained flownet3d model which is trained on FlyingTh-

ings3D [10] synthetic dataset. The inputs to the finetuning network have a sample

size of n = 16, 384 points for each point cloud. We use Adam optimizer [7] with a

learning rate of 0.001. The learning rate follows staircase decay with a decay rate of

0.7 after every 2, 000, 000 steps. We use a batch size of 16 and finetune the model for

65 epochs.

4.4.2.2 Quantitative Results

The quantitative comparison of all the methods, both supervised and self-supervised

are presented in Table 4.4. We observe the performance of finetuning flownet3d us-

ing labels from clustering-based ICP method performs much better than the original

supervised flownet3d. We observe an improvement of 25% in EPE3D, 97% in Acc3D-
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Method EPE3D⇓ Acc3D-5%⇑ Acc3D-10%⇑
Pre-trained 0.1727 18.56% 55.61%

Finetuning-5.5k 0.1693 21.2% 51.82%
Finetuning-full 0.1286 36.6% 72.31%

Table 4.5. The results of finetuning on only a part of the dataset i.e. 250 examples
per each sequence with a total of 22 sequences.

5% and 30% in Acc3D-10%. We also note that the performance is comparable to

fully supervised methods.

One point to note is the fact that Acc3D-5% of the finetuned model did not exceed

that of clustering-based ICP method even though it improved upon original flownet3d

model. This could possibly be attributed as improving the overall performance while

not reaching the fine-grained limits for scene flow estimation.

4.4.2.3 Few-shot Learning

We also look at the performance of finetuning when we do not use all the dataset

and only use first few examples. The performance comparison when only using first

250 examples per each sequence (22 sequences in dataset) is compared against the

full performance in Table 4.5.

We observe that the few-shot finetuning model has an improvement of 2% in

EPE3D and 14% in Acc3D-5% with a slight decrease in Acc3D-10% compared to

original FlowNet3D model. This concludes that the few-shot model focuses more on

correcting fine-grained errors compared to coarse and big errors.

4.4.2.4 Qualitative Results

We refer to Figure 4.3 to show some of the point clouds where finetuned model

performs really well. We observe that error is mostly zero for almost all of the points

which showcases the good performance of the model.
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Figure 4.3. Example of well performing output obtained by finetuning the flownet3d
model in self-supervised manner. The color scale shown represents the error in flow
compared to ground truth. Red being correct to blue being 2.5m error.

Figure 4.4. Example of not so well performing output obtained by finetuning the
flownet3d model in self-supervised manner. The color scale shown represents the error
in flow compared to ground truth. Red being correct to blue being 2.5m error.

Similarly, we examine the cases where the model performs not well in Figure

4.4. First observing the figure to the left we notice that although the flow is mostly

identified in the correct direction, the magnitude of the flow is slightly off from ground

truth (around 0.5m off) for most of the foreground moving cars. This pattern repeats

for few cases which explains the lesser Acc3D-5% compared to clustering-based ICP

method observed while having higher Acc3D-10%. Secondly, we again observe from

the figure on the right that the model still has problems when there is a lack of

variation in the background (it being a flat wall). In this case, we observe that the

results are slightly better compared to the clustering-based ICP model.
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CHAPTER 5

APPLICATIONS & FUTURE WORK

5.1 Applications

We now discuss some of the applications of predicting 3D scene flow from LIDAR

point clouds.

5.1.1 Motion Segmentation

The estimated 3D scene flow can also be used for doing motion segmentation

i.e. separating moving objects from stationary background. Motion Segmentation

helps in better decision making in the planning phase of the autonomous pipeline as

more informed actions can be taken. It also helps in improving the localization ac-

curacy as ego-motion can be separated from motion of other vehicles through motion

segmentation.

A simple implementation of motion segmentation is to cluster the points based on

both location and flow values. An example of such an approach is shown in Figure

5.1.

5.1.2 Object Tracking

Tracking vehicles is one of the most important problems in autonomous vehicles.

We can use the scene flow information to design a simple object tracker which performs

pretty well. We start with 3D bounding boxes detected for a given scene. Then we

can just use greedy matching to match objects with trajectories using the scene flow

information.
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Figure 5.1. The figure shows an example of motion segmentation using estimated
scene flow. The left image shows the estimated scene flow for the scene. The right
image shows the clustering obtained by motion segmentation. Notice the clear sepa-
ration of background and the two moving objects.

5.2 Future Work

There are several promising directions to explore in the future work. The first di-

rection is extending the simple clustering-based ICP method into an iterative method

where the subsequent iterations improve upon the flow from previous iterations. The

next direction would be adding additional losses like cyclic consistency to make fine-

tuning easier. Finally, we would try to similarly finetune other models in literature

to get better performance using labels generated from clustering-based ICP method.
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