
IIT Madras

CS6370

Natural Language Processing

Spellcheck

Team:
Abhishek Naik
Mohan Bhambhani
Shiva Krishna Reddy
YSSV Sasikiran

Roll No:
CS13B030
CS13B036
CS13B051
CS13B055

NLP - Spellcheck Team 4

1 Introduction

In this assignment we deal with the classic problem of Spell Check. The Spell Check
can be categorised into three parts:

1. Word spell check - Suggest corrections for stand alone erroneous words.

2. Phrase spell check - Words present in phrases need to be checked for spelling
errors and corrected. These words could be part of the dictionary, but are not
the intended words in the context of the phrase.

3. Sentence spell check - Similar to phrase, entire sentence needs to be checked
for spelling errors.

We deal with multiple approaches to each of the above sub-problems and use the
models that performed best or a hybrid of the best models by weighted scores.

The assignment is implemented in Python.

2 Corpora used

1. Brown Corpus : The Brown Corpus from here in nltk is annotated with part-
of-speech tags, and is used in the context-sensitive bigram model.

2. COCA : Corpus of Contemporary American English (COCA) from here con-
tains 1,000,000 most frequent n-grams. This was used for contextua l n-grams
spell check.

3. Natural Language Corpus Data: Beautiful Data, from here, which has some
million most frequent words, along with counts for all 2-letter (lowercase)
bigrams, 3-letter trigrams, etc.

3 Assumptions

We make some reasonable simplifying assumptions on the errors in words and phrases
to boost performance with respect to accuracy and computation time.

For a word the error is defined as the Damerau-Levenshtein distance from the correct
intended word. The assumptions are as follows:

1

http://www.helsinki.fi/varieng/CoRD/corpora/BROWN/
http://www.ngrams.info/download_coca.asp
http://norvig.com/ngrams/

NLP - Spellcheck Team 4

1. Words of length less than 5 may have atmost 2 errors.

2. For any incorrect word of length more than 5, there is atleast one trigram of
letters that occur in the correct word. We make use of this assumption during
the candidate generation.

3. As specified in the problem statement, it is being assumed that there is only
one incorrect word per query (phrase or sentence).

4. In case of splitting, a correct word is split only in 2 parts, not more.

4 Word Spell Check

Given a standalone incorrect word, to find the correct word that could have resulted
in that typo. This is a 2-stage process:

1. Candidate generation

2. Candidate ranking

4.1 Candidate generation

The following methods were considered:

4.1.1 Peter Norvig’s method

The Norvig approach [4] to generate the candidates was followed, wherein a simple
edit to a word is a deletion (remove one letter), a transposition (swap two adjacent
letters), a replacement (change one letter to another) or an insertion (add a letter),
which is also the definition of the Damerau–Levenshtein distance.
An edit-distance of 1 can be a big set. For a word of length n and alphabet a, there
will be n deletions, n− 1 transpositions, a ∗n alterations, and a ∗ (n+ 1) insertions,
for a total of 2n + 2an + a− 1 (of which a few are typically duplicates).

Clearly, this grows polynomially in length of the word, and also isn’t language inde-
pendent. (For ex: English has a = 26 letters, and Chinese has 70,000 Unicode Han
characters.

We initially used this approach, with upto 3 edit-distances. It resulted in a large
number of candidates, but that is ok, as the percentage of them present in a dictio-
nary are quite less.

2

NLP - Spellcheck Team 4

An obvious limitation of this approach was that it does not even generate candidates
of higher edit-distances for consideration, because the computation becomes more
and more exhaustive as the size if the string and the extent of edit-distance grows.

4.1.2 FAROO’s implementation

A ‘symmetric delete’ operation [1] is performed in the following manner:

1. Generate terms with an edit distance ≤ 2 (deletes only). Store the shorter
words with the words that generated them. Ex : delete(sun, 1) = sn, and
delete(sun, 1) = sn, so the dictionary entry is {‘sn’ : [‘sun’, ‘sin’]} .
This has to be done only once during a pre-calculation step.

2. Generate terms with an edit distance ≤ 2 (deletes only) from the input term
and search them in the dictionary.

Following these operations, comparing both sets of terms is equivalent to performing
Norvig’s addition, deletion, insertion and transposition.1

The number ‘x’ of deletes for a single dictionary entry depends on the maximum
edit distance: x = n for edit distance=1, x = n ∗ (n− 1)/2 for edit distance=2.

4.1.3 Metaphone and Double Metaphone

Metaphone is a phonetic algorithm for generating encoding of words depicting their
English pronunciations. Metaphone codes use the 16 consonant symbols 0BFHJKLM-
NPRSTWXY. The ‘0’ represents “th”, ‘X’ represents “sh” or “ch”, and the others
represent their usual English pronunciations.

It does not produce phonetic representations of an input word or name; rather, the
output is an intentionally approximate phonetic representation. The approximate
encoding is necessary to account for the way speakers vary their pronunciations and
misspell or otherwise vary words and names they are trying to spell.

The Double Metaphone phonetic encoding algorithm is the second generation of the
Metaphone algorithm. It is called “Double” because it can return both a primary
and a secondary code for a string; this accounts for some ambiguous cases as well
as for multiple variants of surnames with common ancestry. For example, encoding
the name “Smith” yields a primary code of SM0 and a secondary code of XMT,

1 The complete explanation is avoided due to reasons of brevity. It can be looked up in [1], or
the team can explain it during the viva.

3

NLP - Spellcheck Team 4

while the name “Schmidt” yields a primary code of XMT and a secondary code of
SMT–both have XMT in common.

Double Metaphone tries to account for myriad irregularities in English of Slavic,
Germanic, Celtic, Greek, French, Italian, Spanish, Chinese, and other origin. Thus
it uses a much more complex ruleset for coding than its predecessor; for example, it
tests for approximately 100 different contexts of the use of the letter C alone.

We used the candidates returned by the Double Metaphone algorithm, and boosted
their scores while ranking, to account for the phonetic errors that occur in spelling
mistakes.

4.1.4 Inverted index of trigrams

The above mentioned methods make assumptions on the number of errors by limiting
it to two. Here we make a relaxation on the assumption and assume that the misspelt
word has atleast one trigram which has no errors.

1. We make a preprocessing on the dictionary to store an inverted index of all
the trigrams possible and the words that contain that trigram.

2. For a misspelt word to be corrected, we split the word into all possible trigrams
and extract the union of all the words linked to each trigram and use it as the
candidate set.

This way we get words containing larger edit distances than 2. This model is par-
ticularly useful for longer misspelt words where the edit distance could typically be
more than 2. To efficiently implement this, we used the dictionary data structure
which uses hashing. The hashing is O(1) in the average case. Here we blow up on
the number of candidates genetrated, but every possible mistake is recovered.

4.1.5 Final approach used

All the above approaches have individual merits and demerits, and were combined
to generate the best possible set of candidates for an incorrect word.

• The main candidate generation was performed with the inverted index of tri-
grams, which gives an list of candidates from which the typo could have gener-
ated from. The main advantage of this approach is that there is no constraint
of an upper bound of edit-distance, as with Norvig’s and FAROO’s. This
approach was used only when length of the input word is greater than 6.

4

NLP - Spellcheck Team 4

• The Norvig approach was also used2 to supplement the candidate generation
because for words of size ≤ 5, say, the probability of even one trigram matching
the correct word is close to zero. This results in a lot of ‘bad’ candidates.

• Finally, as mentioned earlier, the candidates generated by the phonetic algo-
rithm are given a boosted score while ranking.

4.2 Candidate ranking

The candidates obtained by the above method are scored using the approach in [5]
and the top candidates are found based on the score assignes.For a given misspelt
word t, we find the value proportional to the posterior probability of each correct
word, i.e

Pr(ci|t) ∝ Pr(t|ci).P r(ci)

=⇒ log(Pr(ci|t)) ∝ log (Pr(t|ci)) + log (Pr(ci))

We make the Naive Bayes assumption on the Pr(t|ci) and approximate it as :

p(t|ci) =
∏
j

p(tj|c) where tj is an error

Hence we get:

log(Pr(ci|t)) ∝
∑
j

log (Pr(tj|ci)) + log (Pr(ci))

Firstly we find the tjs by using Dynamix Programming. We fill a matrix M contain-
ing all the edit distance information, i.e M[i,j] represents edit distance of ci:n , tj:n.
We use this matrix to recursively find positions at which errors occur. Then each
of the log (Pr(tj|ci)) is found by using the rev[x,y] , del[x,y] , add[x,y] and sub[x,y]
mentioned in the paper[5] and dividing with the counts from [4].

The following is the algorithm:

• Given, a typo and a candidate, we first find all the edits between the typo and
the candidate by backtracking the dynamic programming matrix generated
while finding the Damerau–Levenshtein distance.

2FAROO’s faster algorithm for candidate generation has large pre-processing overheads, and
gives noticeable speedup for use-cases with 1000s of corrections. For our application, it would not
provide a competitive edge, and Norvig’s approach used instead.

5

NLP - Spellcheck Team 4

• Then for each edit, we estimate the probability of that edit happening using
the bayesian approach mentioned in [5].

• We use the assumption that each edit is independent of the other edits and
hence we calculate the likelihood of the candidate given the typo by multiplying
all the individual edit probabilities.

• We use the relative number of occurrences of the candidate as the prior.

• We add an additional smoothing parameter for reducing the dependence of
probability score on number of edits.

• For all the candidates which are generated by the phonetic algorithm, we add
an additional weight while calculating the prior for those candidates.

• Finally, we sort the candidates based on the probability rank generated.

5 Phrase and Sentence Spell Check

Phrase correction is a harder problem to solve compared to the non-word correction.
Here we need to look at the context of the word in the sentence by examining
the nearby words and then decide which word best fits the context. For this we
obtained a set of commonly confused words compiled from a few sources and for
every occurrence of a potentially confused words we compute the score of each of
the possible words and assign the word with the highest score.
We used the following approaches:

5.1 Hidden Markov model of Bi-gram words

A Hidden Markov model is a statistical model where the system is modeled as a
Markov process with hidden states. For context sensitive spell check, we employ
HMMs in the following way based on an idea in [2].

• We model the Parts of Speech(POS) of a word as the hidden variable and the
word itself as the observed variable.

• We first find the transition probability matrix for the parts of speech from the
training data. We also find the emission probability of a word from a POS.
We use the brown tagged corpus for the training purpose and estimate the
transition and emission as follows.

6

NLP - Spellcheck Team 4

Transition Probability(a, b) =
No.of times tag(b) follows tag(a)

No. of times tag(a) occurs

Emission Probability(w, a) =
No.of times word w occurs with tag(a)

No. of times tag(a) occurs

• Then for each word in the given sentence(may contain context-sensitive mis-
takes), if the word is present in any confusion set, we replace the word with
all possible candidates from the confusion set and get the probability of the
sentence being generated with each confusion word.

• We then choose that confusion word which gives highest probability of that
sentence being generated.

In this approach, we find the probability of a candidate sentence being generated in
the following way.

• For each word in the candidate sentence, we first generate all possible tags of
that word from the dictionary. We append a starting tag at the beginning of
the sentence. We also initialize the probability of generation to 1.

• Then for each possible tag of a current word, we find the probability of that
tag being generated from all possible tags of the previous word multiplied with
probability of that tag emitting the current word.

• For all the tags of the current word, we store the previous tag which gave
highest probability of generation of sentence until that word along with the
probability value.

• We then find the tag sequence which gives highest probability of generation of
sentence by backtracking from the maximum probable tag of the last word.

However this model does not give good results when all the confusion words have
the same POS tag since the score will be based only on the Pr (yi|POSi) This is not
acceptable since confusion words could be the same for significant number of cases
(Ex: between and among).

Hence we used the Web-Scale N-gram Model described below

5.2 Web-Scale N-gram Model

This model is used only in the cases where all the potential words of a confused word
have the same POS tag. In such a scenario the Markov Model simply assigns the
Pr (Wk|POSK) as the score to each Wk. This model is based on [6], specifically the

7

NLP - Spellcheck Team 4

SUMLM approach. Here we make use of the counts of 2-grams, 3-grams, 4-grams
and 5-grams from the data provided by COCA[3] containing about a million ngrams’
counts.

We assume that the phrase provided has already been accounted for all the spelling
mistakes of non-words i.e words not occuring in the dictionary. For a confused word
W0 in a given sentence, we create the n-grams 2 ≤ n ≤ 5 containing W0, resulting
in a total of at most 14 n-grams(2+3+4+5). For example for 5-grams :

W−4W−3W−2W−1W0

W−3W−2W−1W0W1

W−2W−1W0W1W2

W−1W0W1W2W3

W0W1W2W3W4

Now let Y = {Y1, Y2, ..Yk} be the set of possible confusion words of W0. Then we
replace W0 with each of the Yk and find the count of the resulting ngram. We add
these counts from all ngrams (n = 2, 3, 4, 5) for each Yk and use this as the score.

This model is similar to the naive bayes model, except that the prior log counts are
not considered. This model also gave good results but suffers from the sparsity of
the data. Hence we used this model only when the POS tags are same for all Yk ∈ Y .
Furthermore we have weighted the results using both the score from the corpus data
and the score from the stand alone word check and this gave better results.

6 Word Segmentation

Word segmentation[7] deals with the problem of splitting a word which is missing
spaces. As an example, the word ”footballground” must be split as ”football ground”.
For this we follow the below approach.

• We first generate all the possible splits of the word such that length of each
split is less than a maximum limit(L = 20).During the split generation, we
memorize the call to the function with same inputs to reduce the split time.

• We then find the probability of the sequence of split words being generated in
sequence using the Bi-gram counts and return that split which has the highest

8

NLP - Spellcheck Team 4

probability.
Pr(w1, w2, ..., wn) = Πn

i=1Pr(wi|wi−1)

7 Final Combination

We describe the steps in the final algorithm given a spelling error to be corrected:

1. For word spell check, we just pass the typo to the program and use the above
given algorithms for candidate generation and ranking and return the top 10
ranked words and their scores.

2. For phrase and sentence spell check, we first try to resolve the errors where a
single word was split as two words.(Ex:hand bags must be written as handbags).
We achieve this by combining each consecutive word in the sentence and giving
it to segment algorithm. If the segment algorithm returns the combined word
with high probability, we merge the words and return.

3. We then check each word in the dictionary. If the word is not present in
dictionary it may be a spell error or a segmentation error.

4. For each word which is not in dictionary, we give the word to the segment
function, and if it divides the word with a probability greater than threshold,
we consider that as error and return.

5. If the segment function did not split the word, we then pass the word to
word spell check algorithm to obtain the ten most relevant words. We then
replace the word with the most relevant and add all the other 9 words in the
confusion set of the most relevant word. We then pass to the context spell
check algorithm.

6. If all the words are present in dictionary, we may still have a word which is in
dictionary but may not be in confusion set.(Ex: cort and cost).

7. In this scenario, for each word wi, we give this word to the spell check and get
back ten most relevant words. We then add these words to the confusion set
of the first word.

8. Now, if the first word is not in confusion set, we directly use the N-Gram based
method to correct the word. This is because we may still have many words
which are in the top 10 and have the same parts of speech for which bi-gram
HMM does not work good.

9

NLP - Spellcheck Team 4

9. If the first word is in confusion set, we directly call the hybrid method for
ranking the words.

10. We finally output the top 3 words for each confusion word in each phrase
separately.

8 Results

Both the stand alone word error correction and the phrase/sentence correction gave
good results on the input data provided. An MRR of 1.0 was obtained for almost
all the word test cases. As for the phrase errors, we got an MRR of 1.0 for most of
the cases. However we got a MRR of 0.5 for phrases like roff of the house where our
result was off followed by roof. This can be attributed to a large number of n-grams
in the training data with the word off. We could not perform well on a few phrases
like coyote fox which was almost unseen by the training corpus. Hence the sparsity
of the data was the major reason for some of these extreme cases.

10

NLP - Spellcheck Team 4

References

[1] Faroo - fast candidate generation. http://blog.faroo.com/2012/06/07/

improved-edit-distance-based-spelling-correction/.

[2] A mixed trigrams approach for context sensitive spell checking. http://nlp.

cs.uic.edu/PS-papers/spell-cicling07.pdf.

[3] N-grams data : Corpus of contemporary american english. http://www.ngrams.
info/download_coca.asp.

[4] Peter norvig’s basic spell check. http://norvig.com/spell-correct.html.

[5] Spelling correction program based on noisy channel model. http://www.aclweb.
org/anthology/C90-2036.

[6] Web-scale n-gram models for lexical disambiguation. http://www.clsp.jhu.

edu/~sbergsma/Pubs/bergsmaLinGoebel_WebNGram_IJCAI09.pdf.

[7] Word segmentation. http://norvig.com/ngrams/ch14.pdf.

11

http://blog.faroo.com/2012/06/07/improved-edit-distance-based-spelling-correction/
http://blog.faroo.com/2012/06/07/improved-edit-distance-based-spelling-correction/
http://nlp.cs.uic.edu/PS-papers/spell-cicling07.pdf
http://nlp.cs.uic.edu/PS-papers/spell-cicling07.pdf
http://www.ngrams.info/download_coca.asp
http://www.ngrams.info/download_coca.asp
http://norvig.com/spell-correct.html
http://www.aclweb.org/anthology/C90-2036
http://www.aclweb.org/anthology/C90-2036
http://www.clsp.jhu.edu/~sbergsma/Pubs/bergsmaLinGoebel_WebNGram_IJCAI09.pdf
http://www.clsp.jhu.edu/~sbergsma/Pubs/bergsmaLinGoebel_WebNGram_IJCAI09.pdf
http://norvig.com/ngrams/ch14.pdf

	Introduction
	Corpora used
	Assumptions
	Word Spell Check
	Candidate generation
	Peter Norvig's method
	FAROO's implementation
	Metaphone and Double Metaphone
	Inverted index of trigrams
	Final approach used

	Candidate ranking

	Phrase and Sentence Spell Check
	Hidden Markov model of Bi-gram words
	Web-Scale N-gram Model

	Word Segmentation
	Final Combination
	Results

