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1 Introduction
Object detection in visual systems is becoming important in many applications with emphasis on
accurate and reliable real time systems. R-CNN [11] , Fast R-CNN [3] and Faster R-CNN [4] are
some of the models which try to address the problem of object detection. But these models only
reach a frame rate of 7 frames per second. YOLO [16] is a step in the direction of achieving real
time object detection with frame rate of about 45 fps, while still achieving reasonable accuracy on
Pascal 2007-VOC dataset [10]. Several variants of YOLO have been proposed [15] which improve
upon the accuracy while maintaining the frame rate. In this work we experiment with YOLO and
its variant and observe the influence of different design decisions in the final results.

2 Literature Survey
Convolutional Neural Networks have become popular due to the large availability of data and the
advent of accelerated hardware for computation. CNNs have become popular in tasks related to
Computer Vision after their application in the winning submission of IMAGENET Challenge [7].
Recently CNNs have been applied to various fields of computer Vision like Object Detection [11] [3]
[4], Object Recognition [7] [14] [6], Semantic Segmentation [9] [5], Activity Recognition [8] [13], etc.

Object Detection is the task of identifying all the objects in the given image and localizing
them using a bounding box. The work on Object Detection prior to Deep Learning poses the
localization as a regression problem. Handcrafted features are extracted from the image and a
regressor is learnt which outputs the bounding box co-ordinates in the image. These have achieved
a very poor mAP of 30.8% on PASCAL VOC challenge as observed by [11].

RCNN [11] uses convolutional neural networks to solve the problem of Object Detection. RCNN
first extracts region proposals using Selective search, extracts the CNN features for each proposal
and trains a classifier and bounding box regressor for predicting the class of the object as well as
its location.

Figure 1: An overall summary of the method used in rcnn for object detection.

RCNN is quite slow in its predictions taking a time of 20sec per each test image. Several
variants of RCNN have been proposed which improve the performance of RCNN and have a better
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processing time per image. SPPNet [12] and Fast RCNN [3] avoid extracting the features for
each region proposal separately and pass the image once through CNN and extract the features
corresponding to each proposal from the final feature map. Faster RCNN [4] further improves the
performance using a CNN(Region Proposal Network) to extract the region proposals.

Figure 2: The hierarchical architecture used in Faster RCNN which consists of region proposal
network and the classifier.

Though Faster RCNN has a good accuracy on the object Detection task, it still can not be
used in real-time systems because of its higher processing time per each image (140ms/image).
Also Faster RCNN is not a unified model and its training is done in several parts where the region
proposal network is trained first and the whole network is trained again.

YOLO [16] proposes an object detection system which works in near real-time with a unified
model(single CNN) for Object Recognition. YOLO divides the given image into a regular grid.
For each cell in the grid, the CNN is trained to predict bounding boxes and class probabilities.
Each bounding box prediction consists of the box co-ordinates (x,y,w,h) and the confidence of the
bounding box (c) which models its Intersection over Union (IOU) with ground truth and probability
of presence of an object.
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Figure 3: The graphical summary of the method used for bounding box predictions in YOLO.

The predictions are made in the form of a feature vector which is obtained from the last fully
connected layer in the neural network. The CNN model used is similar to the the Google-Net
model where the inception module consists of only 3× 3 convolutions. This architecture is shown
in the figure 4.

Figure 4: The CNN architecture used in YOLO

YOLO performs the object detection task in real-time with a frame rate of 45fps. It achieves
63.4%mAP on PASCAL VOC dataset. Several improvements for YOLO have been proposed
which improve the predictions of the model while maintaining its frame rate and the model has
been named as YOLO v2 [15].

YOLO v2 improves the performance of the model using several variations. It introduces Batch
Normalization [1] after each convolutional layer which helps in faster and better learning. The
main variation with the original model is the introduction of anchor boxes in YOLO v2. First,
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the most relevant anchor boxes for the data-set are extracted as prior anchor boxes by clustering
all the ground truth bounding boxes using K-means clustering with IOU as the distance measure.
The cluster centers of K-means are taken as reference anchor boxes.

Then at each location in the grid cell, the changes to these anchor boxes are predicted. This
makes the model easily trainable since we only need to predict changes to prior boxes and also
results in a significant improvement in performance ( 5%mAP ). Also the model is trained at dif-
ferent resolutions of input image to identify the objects at different scales with a better accuracy.

3 Datasets
We use Pascal 2007-VOC and Pascal 2012-VOC [10] datasets for this project. Training is done
using training data from both 2007-VOC and 2012-VOC. Testing is done only on 2007-VOC test
data so as to compare the results with many papers including R-CNN based and YOLO which
show the results on this dataset.

4 Experiments
Experiments are done with mean average precision : mAP(described in next section) and mean
Recall as metrics.

4.1 YOLO
Instead of proposing regions and then detecting objects, YOLO performs an end to end detection
of objects as described in the above section. We use the code written in C from the authors of
YOLO [2] to train on the VOC data. The authors’ code was exported in a framework called Dark-
net which allows us to make modifications to network while abstracting out the training. Testing
code was written in C and partly in python by us. Training is done on a single Titan-X GPU. We
were able to achieve a mAP of 61.2 close to the author’s claim of 63.4 .

The following experiments are done after studying the work by [15] called YOLO-v2

4.2 Transfer Learning
To have better initializing for the network, we train the network on IMAGE-NET for 10 epochs and
use those weights for initializing the network. This improves the mAP to about 64% . The weights
after training on Image-net are taken from [2]. This shows the efficiency of transfer learning on
object detection.

4.3 Better priors using K-Means
In YOLO anchor boxes are hand crafted with varying width and height. Instead of doing that, one
could initialize the anchor boxes with priors learned from the data itself. By treating each anchor
box as a point in space, K-Means clusering on the bounding boxes is done to get good shapes for
the anchor boxes. Here K=5 gave good results for the authors and they provide the shape of the
anchor boxes. We use the same anchor boxes as priors.

4.4 Batch Normalization
Better regularization often results in better results. YOLO uses drop out as regularizer. [15] uses
batch normalization. We tried with both batch normalization and drop out which gave poorer
results when trained for same number of epochs. Finally we also use only batch normalization.
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4.5 Frame rate vs Accuracy
YOLO-v2 removes the FC layer from the network, and predicts K=5 bounding boxes for every
location in the output feature map. This makes the model easy to adapt to different input sizes.
Also the network itself can be made shallow or deeper depending on the acccuracy needed. We
train such a model using a shallower network, to achieve a reasonable mAP of 50.7% achieving a
huge frame rate of 243 fps on the Titan-X GPU. With a deeper network we achieve an mAP of
74.97% at a frame rate of 76 fps close of YOLO-v2 author’s claim of 78% using more advanced
techniques such as wordtrees etc.

4.6 Thresholding
In the mAP estimation Zisserman [10] proposes an IOU (Intersection over union) of atleast 0.5 to
be considered a correct bounding box. For this IOU we look at various thresholds on the confidence
of each box, to be considered as a predicted box. The results are shown in Table-1

Threshold mean Precision(%) mean Recall(%)
0.1 62.3 84.0
0.2 72.39 82.05
0.25 74.97 81.4
0.5 84.0 74.7

Table 1:

4.7 Evaluation Metrics
We consider only bounding boxes with IOU greater than 0.5 with any of the ground-truth boxes
as correctly retrieved matches as proposed by Zisserman. Now, we make a matching between
predicted and ground-truth boxes for the test data with prioirity to class label being the same
and then the IOU match. After this mathcing is done, we find precision and recall. The average
over the precision values across images averaged over discrete (K=11) recall levels is called Mean
Average Precision or mAP and is reflective of the area under the ROC curve. This is used as the
evaulation metric along with mean Recall.

4.8 Results at a glance

Method mAP % mAP (Author’s Claim)
YOLO 61.2 63.4

YOLO with Tranfer learning 64.0 –
Better priors and regularization 74.97 –

Tiny-YOLO (243fps) 50.7 –
YOLO-v2 at (76fps) 74.97 78.6 at (70fps)
Thresholding of 0.5 84.0* –

Table 2: *: Mean Precision at loss of 6% Recall, not mAP

5 Conclusions and Future work
We experiment with methods descibed in [15] and show results close to stated results. Thus YOLO-
v2 improves over the existing object detection framework with several innovations along with real
time results using above mentioned techniques. Also due to unified structure YOLO is much faster
to train using a single GPU. We conjecture that a model like a convolutional pose machine where
results are iteratively improved will give better performance at slight trade off with detection time.
We intend to try this out in near future.
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6 Some Results

Figure 5: Good Resolution Invariance on Test images
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